数据构造(Data Structure,简称DSA)是打算机科学顶用于存储、构造数据的方法。在C言语中,数据构造是实现高效算法的基本。本文将深刻剖析C言语中的多少种关键数据构造及其算法,帮助读者解锁C言语的魅力,控制DSA算法的精华与实战技能。
数组是一种基本的数据构造,用于存储牢固大小的元素序列。以下是一个简单的数组操纵示例:
#include <stdio.h>
int main() {
int arr[5] = {1, 2, 3, 4, 5};
printf("第一个元素: %d\n", arr[0]);
return 0;
}
链表是一种静态数据构造,由一系列节点构成,每个节点包含数据跟指向下一个节点的指针。以下是一个简单的单向链表拔出操纵示例:
#include <stdio.h>
#include <stdlib.h>
typedef struct Node {
int data;
struct Node* next;
} Node;
Node* createNode(int data) {
Node* newNode = (Node*)malloc(sizeof(Node));
newNode->data = data;
newNode->next = NULL;
return newNode;
}
void insertNode(Node** head, int data) {
Node* newNode = createNode(data);
newNode->next = *head;
*head = newNode;
}
int main() {
Node* head = NULL;
insertNode(&head, 10);
insertNode(&head, 20);
insertNode(&head, 30);
while (head != NULL) {
printf("%d ", head->data);
head = head->next;
}
return 0;
}
栈是一种掉落队先出(Last In First Out,简称LIFO)的数据构造。以下是一个简单的栈操纵示例:
#include <stdio.h>
#include <stdlib.h>
typedef struct Stack {
int top;
int capacity;
int* array;
} Stack;
Stack* createStack(int capacity) {
Stack* stack = (Stack*)malloc(sizeof(Stack));
stack->capacity = capacity;
stack->top = -1;
stack->array = (int*)malloc(stack->capacity * sizeof(int));
return stack;
}
int isFull(Stack* stack) {
return stack->top == stack->capacity - 1;
}
int isEmpty(Stack* stack) {
return stack->top == -1;
}
void push(Stack* stack, int item) {
if (isFull(stack))
return;
stack->array[++stack->top] = item;
}
int pop(Stack* stack) {
if (isEmpty(stack))
return -1;
return stack->array[stack->top--];
}
int main() {
Stack* stack = createStack(5);
push(stack, 10);
push(stack, 20);
push(stack, 30);
printf("Popped item: %d\n", pop(stack));
printf("Popped item: %d\n", pop(stack));
return 0;
}
行列是一种进步先出(First In First Out,简称FIFO)的数据构造。以下是一个简单的行列操纵示例:
#include <stdio.h>
#include <stdlib.h>
typedef struct Queue {
int front;
int rear;
int capacity;
int* array;
} Queue;
Queue* createQueue(int capacity) {
Queue* queue = (Queue*)malloc(sizeof(Queue));
queue->capacity = capacity;
queue->front = queue->rear = -1;
queue->array = (int*)malloc(queue->capacity * sizeof(int));
return queue;
}
int isFull(Queue* queue) {
return (queue->rear + 1) % queue->capacity == queue->front;
}
int isEmpty(Queue* queue) {
return queue->front == -1;
}
void enqueue(Queue* queue, int item) {
if (isFull(queue))
return;
queue->rear = (queue->rear + 1) % queue->capacity;
queue->array[queue->rear] = item;
}
int dequeue(Queue* queue) {
if (isEmpty(queue))
return -1;
int item = queue->array[queue->front];
queue->front = (queue->front + 1) % queue->capacity;
return item;
}
int main() {
Queue* queue = createQueue(5);
enqueue(queue, 10);
enqueue(queue, 20);
enqueue(queue, 30);
printf("Dequeued item: %d\n", dequeue(queue));
printf("Dequeued item: %d\n", dequeue(queue));
return 0;
}
树是一种非线性数据构造,由节点构成,每个节点有零个或多个子节点。以下是一个简单的二叉树拔出操纵示例:
#include <stdio.h>
#include <stdlib.h>
typedef struct Node {
int data;
struct Node* left;
struct Node* right;
} Node;
Node* createNode(int data) {
Node* newNode = (Node*)malloc(sizeof(Node));
newNode->data = data;
newNode->left = newNode->right = NULL;
return newNode;
}
void insertNode(Node** root, int data) {
if (*root == NULL) {
*root = createNode(data);
return;
}
Node* current = *root;
Node** parent = NULL;
while (current != NULL) {
parent = ¤t;
if (data < current->data)
current = current->left;
else
current = current->right;
}
if (data < (*parent)->data)
(*parent)->left = createNode(data);
else
(*parent)->right = createNode(data);
}
int main() {
Node* root = NULL;
insertNode(&root, 10);
insertNode(&root, 5);
insertNode(&root, 15);
// 遍历二叉树
// ...
return 0;
}
排序算法是数据构造中罕见的算法之一。以下是一个简单的冒泡排序算法示例:
#include <stdio.h>
void bubbleSort(int arr[], int n) {
for (int i = 0; i < n - 1; i++) {
for (int j = 0; j < n - i - 1; j++) {
if (arr[j] > arr[j + 1]) {
int temp = arr[j];
arr[j] = arr[j + 1];
arr[j + 1] = temp;
}
}
}
}
int main() {
int arr[] = {64, 34, 25, 12, 22, 11, 90};
int n = sizeof(arr) / sizeof(arr[0]);
bubbleSort(arr, n);
printf("Sorted array: \n");
for (int i = 0; i < n; i++)
printf("%d ", arr[i]);
printf("\n");
return 0;
}
查找算法是用于在数据构造中查找特定元素的算法。以下是一个简单的二分查找算法示例:
#include <stdio.h>
int binarySearch(int arr[], int l, int r, int x) {
while (l <= r) {
int m = l + (r - l) / 2;
if (arr[m] == x)
return m;
if (arr[m] < x)
l = m + 1;
else
r = m - 1;
}
return -1;
}
int main() {
int arr[] = {2, 3, 4, 10, 40};
int n = sizeof(arr) / sizeof(arr[0]);
int x = 10;
int result = binarySearch(arr, 0, n - 1, x);
if (result == -1)
printf("Element is not present in array");
else
printf("Element is present at index %d", result);
return 0;
}
本文深刻剖析了C言语中的多少种关键数据构造及其算法,帮助读者解锁C言语的魅力,控制DSA算法的精华与实战技能。经由过程进修本文,读者可能更好地懂得跟利用数据构造,进步编程才能。