【揭秘C语言编程中的“大A”奥秘】一招轻松掌握复杂算法!

发布时间:2025-05-23 00:27:00

在C言语编程中,我们常常碰到各种复杂的算法成绩。这些算法可能是排序、查抄、字符串处理等。而在这其中,“大年夜A”算法(平日指的是A*查抄算法)是一个非常有效的东西。本文将深刻剖析“大年夜A”算法的奥秘,并展示如何在一招中轻松控制它。

一、A*算法概述

A*算法是一种启发式查抄算法,它结合了最佳优先查抄跟Dijkstra算法的长处。它的核心头脑是评价每个节点的“总价值”,这个总价值由两部分构成:现实本钱跟启发式估计本钱。

  • 现实本钱:从出发点到以后节点的现实间隔。
  • 启发式估计本钱:从以后节点到目标节点的估计间隔。

A*算法会优先抉择总价值最小的节点停止扩大年夜,从而找到从出发点到目标的最短道路。

二、A*算法的C言语实现

下面是一个简单的A*算法的C言语实现示例:

#include <stdio.h>
#include <stdlib.h>
#include <limits.h>

#define MAX_NODES 1000

typedef struct {
    int x, y;
} Point;

typedef struct {
    Point point;
    int g, h, f;
} Node;

Node openList[MAX_NODES];
Node closedList[MAX_NODES];
int openListSize = 0;
int closedListSize = 0;

int heuristic(Point a, Point b) {
    return abs(a.x - b.x) + abs(a.y - b.y);
}

int findNode(Point p) {
    for (int i = 0; i < openListSize; i++) {
        if (openList[i].point.x == p.x && openList[i].point.y == p.y) {
            return i;
        }
    }
    return -1;
}

void addOpenList(Node node) {
    openList[openListSize++] = node;
}

void addClosedList(Node node) {
    closedList[closedListSize++] = node;
}

void removeOpenList(int index) {
    for (int i = index; i < openListSize - 1; i++) {
        openList[i] = openList[i + 1];
    }
    openListSize--;
}

int main() {
    // 初始化出发点跟起点
    Point start = {0, 0};
    Point end = {5, 5};

    // 增加出发点到开放列表
    Node startNode = {start, 0, heuristic(start, end), 0};
    addOpenList(startNode);

    while (openListSize > 0) {
        // 找到总价值最小的节点
        int minIndex = 0;
        for (int i = 1; i < openListSize; i++) {
            if (openList[i].f < openList[minIndex].f) {
                minIndex = i;
            }
        }

        // 获取以后节点
        Node currentNode = openList[minIndex];
        removeOpenList(minIndex);
        addClosedList(currentNode);

        // 假如达到起点,则结束
        if (currentNode.point.x == end.x && currentNode.point.y == end.y) {
            break;
        }

        // 扩小节点
        Point neighbor;
        neighbor.x = currentNode.point.x - 1;
        neighbor.y = currentNode.point.y;
        if (neighbor.x >= 0 && neighbor.y >= 0 && neighbor.x < 5 && neighbor.y < 5) {
            int index = findNode(neighbor);
            if (index == -1) {
                Node neighborNode = {neighbor, currentNode.g + 1, heuristic(neighbor, end), currentNode.g + 1 + heuristic(neighbor, end)};
                addOpenList(neighborNode);
            } else {
                if (currentNode.g + 1 < openList[index].g) {
                    openList[index].g = currentNode.g + 1;
                    openList[index].f = currentNode.g + 1 + heuristic(neighbor, end);
                }
            }
        }

        neighbor.x = currentNode.point.x + 1;
        neighbor.y = currentNode.point.y;
        if (neighbor.x >= 0 && neighbor.y >= 0 && neighbor.x < 5 && neighbor.y < 5) {
            int index = findNode(neighbor);
            if (index == -1) {
                Node neighborNode = {neighbor, currentNode.g + 1, heuristic(neighbor, end), currentNode.g + 1 + heuristic(neighbor, end)};
                addOpenList(neighborNode);
            } else {
                if (currentNode.g + 1 < openList[index].g) {
                    openList[index].g = currentNode.g + 1;
                    openList[index].f = currentNode.g + 1 + heuristic(neighbor, end);
                }
            }
        }

        neighbor.x = currentNode.point.x;
        neighbor.y = currentNode.point.y - 1;
        if (neighbor.x >= 0 && neighbor.y >= 0 && neighbor.x < 5 && neighbor.y < 5) {
            int index = findNode(neighbor);
            if (index == -1) {
                Node neighborNode = {neighbor, currentNode.g + 1, heuristic(neighbor, end), currentNode.g + 1 + heuristic(neighbor, end)};
                addOpenList(neighborNode);
            } else {
                if (currentNode.g + 1 < openList[index].g) {
                    openList[index].g = currentNode.g + 1;
                    openList[index].f = currentNode.g + 1 + heuristic(neighbor, end);
                }
            }
        }

        neighbor.x = currentNode.point.x;
        neighbor.y = currentNode.point.y + 1;
        if (neighbor.x >= 0 && neighbor.y >= 0 && neighbor.x < 5 && neighbor.y < 5) {
            int index = findNode(neighbor);
            if (index == -1) {
                Node neighborNode = {neighbor, currentNode.g + 1, heuristic(neighbor, end), currentNode.g + 1 + heuristic(neighbor, end)};
                addOpenList(neighborNode);
            } else {
                if (currentNode.g + 1 < openList[index].g) {
                    openList[index].g = currentNode.g + 1;
                    openList[index].f = currentNode.g + 1 + heuristic(neighbor, end);
                }
            }
        }
    }

    return 0;
}

三、总结

经由过程本文的介绍,信赖你曾经对A*算法有了深刻的懂得。A*算法是一种非常实用的查抄算法,它可能利用于各种场景,如道路打算、迷宫求解等。控制A*算法,可能帮助你轻松处理很多复杂的编程成绩。