引言
數據構造(Data Structure,簡稱DSA)是打算機科學頂用於存儲、構造數據的方法。在C言語中,數據構造是實現高效演算法的基本。本文將深刻剖析C言語中的多少種關鍵數據構造及其演算法,幫助讀者解鎖C言語的魅力,控制DSA演算法的精華與實戰技能。
一、線性數據構造
1. 數組
數組是一種基本的數據構造,用於存儲牢固大小的元素序列。以下是一個簡單的數組操縱示例:
#include <stdio.h>
int main() {
int arr[5] = {1, 2, 3, 4, 5};
printf("第一個元素: %d\n", arr[0]);
return 0;
}
2. 鏈表
鏈表是一種靜態數據構造,由一系列節點構成,每個節點包含數據跟指向下一個節點的指針。以下是一個簡單的單向鏈表拔出操縱示例:
#include <stdio.h>
#include <stdlib.h>
typedef struct Node {
int data;
struct Node* next;
} Node;
Node* createNode(int data) {
Node* newNode = (Node*)malloc(sizeof(Node));
newNode->data = data;
newNode->next = NULL;
return newNode;
}
void insertNode(Node** head, int data) {
Node* newNode = createNode(data);
newNode->next = *head;
*head = newNode;
}
int main() {
Node* head = NULL;
insertNode(&head, 10);
insertNode(&head, 20);
insertNode(&head, 30);
while (head != NULL) {
printf("%d ", head->data);
head = head->next;
}
return 0;
}
二、非線性數據構造
1. 棧
棧是一種掉落隊先出(Last In First Out,簡稱LIFO)的數據構造。以下是一個簡單的棧操縱示例:
#include <stdio.h>
#include <stdlib.h>
typedef struct Stack {
int top;
int capacity;
int* array;
} Stack;
Stack* createStack(int capacity) {
Stack* stack = (Stack*)malloc(sizeof(Stack));
stack->capacity = capacity;
stack->top = -1;
stack->array = (int*)malloc(stack->capacity * sizeof(int));
return stack;
}
int isFull(Stack* stack) {
return stack->top == stack->capacity - 1;
}
int isEmpty(Stack* stack) {
return stack->top == -1;
}
void push(Stack* stack, int item) {
if (isFull(stack))
return;
stack->array[++stack->top] = item;
}
int pop(Stack* stack) {
if (isEmpty(stack))
return -1;
return stack->array[stack->top--];
}
int main() {
Stack* stack = createStack(5);
push(stack, 10);
push(stack, 20);
push(stack, 30);
printf("Popped item: %d\n", pop(stack));
printf("Popped item: %d\n", pop(stack));
return 0;
}
2. 行列
行列是一種進步先出(First In First Out,簡稱FIFO)的數據構造。以下是一個簡單的行列操縱示例:
#include <stdio.h>
#include <stdlib.h>
typedef struct Queue {
int front;
int rear;
int capacity;
int* array;
} Queue;
Queue* createQueue(int capacity) {
Queue* queue = (Queue*)malloc(sizeof(Queue));
queue->capacity = capacity;
queue->front = queue->rear = -1;
queue->array = (int*)malloc(queue->capacity * sizeof(int));
return queue;
}
int isFull(Queue* queue) {
return (queue->rear + 1) % queue->capacity == queue->front;
}
int isEmpty(Queue* queue) {
return queue->front == -1;
}
void enqueue(Queue* queue, int item) {
if (isFull(queue))
return;
queue->rear = (queue->rear + 1) % queue->capacity;
queue->array[queue->rear] = item;
}
int dequeue(Queue* queue) {
if (isEmpty(queue))
return -1;
int item = queue->array[queue->front];
queue->front = (queue->front + 1) % queue->capacity;
return item;
}
int main() {
Queue* queue = createQueue(5);
enqueue(queue, 10);
enqueue(queue, 20);
enqueue(queue, 30);
printf("Dequeued item: %d\n", dequeue(queue));
printf("Dequeued item: %d\n", dequeue(queue));
return 0;
}
3. 樹
樹是一種非線性數據構造,由節點構成,每個節點有零個或多個子節點。以下是一個簡單的二叉樹拔出操縱示例:
#include <stdio.h>
#include <stdlib.h>
typedef struct Node {
int data;
struct Node* left;
struct Node* right;
} Node;
Node* createNode(int data) {
Node* newNode = (Node*)malloc(sizeof(Node));
newNode->data = data;
newNode->left = newNode->right = NULL;
return newNode;
}
void insertNode(Node** root, int data) {
if (*root == NULL) {
*root = createNode(data);
return;
}
Node* current = *root;
Node** parent = NULL;
while (current != NULL) {
parent = ¤t;
if (data < current->data)
current = current->left;
else
current = current->right;
}
if (data < (*parent)->data)
(*parent)->left = createNode(data);
else
(*parent)->right = createNode(data);
}
int main() {
Node* root = NULL;
insertNode(&root, 10);
insertNode(&root, 5);
insertNode(&root, 15);
// 遍歷二叉樹
// ...
return 0;
}
三、演算法實戰
1. 排序演算法
排序演算法是數據構造中罕見的演算法之一。以下是一個簡單的冒泡排序演算法示例:
#include <stdio.h>
void bubbleSort(int arr[], int n) {
for (int i = 0; i < n - 1; i++) {
for (int j = 0; j < n - i - 1; j++) {
if (arr[j] > arr[j + 1]) {
int temp = arr[j];
arr[j] = arr[j + 1];
arr[j + 1] = temp;
}
}
}
}
int main() {
int arr[] = {64, 34, 25, 12, 22, 11, 90};
int n = sizeof(arr) / sizeof(arr[0]);
bubbleSort(arr, n);
printf("Sorted array: \n");
for (int i = 0; i < n; i++)
printf("%d ", arr[i]);
printf("\n");
return 0;
}
2. 查找演算法
查找演算法是用於在數據構造中查找特定元素的演算法。以下是一個簡單的二分查找演算法示例:
#include <stdio.h>
int binarySearch(int arr[], int l, int r, int x) {
while (l <= r) {
int m = l + (r - l) / 2;
if (arr[m] == x)
return m;
if (arr[m] < x)
l = m + 1;
else
r = m - 1;
}
return -1;
}
int main() {
int arr[] = {2, 3, 4, 10, 40};
int n = sizeof(arr) / sizeof(arr[0]);
int x = 10;
int result = binarySearch(arr, 0, n - 1, x);
if (result == -1)
printf("Element is not present in array");
else
printf("Element is present at index %d", result);
return 0;
}
四、總結
本文深刻剖析了C言語中的多少種關鍵數據構造及其演算法,幫助讀者解鎖C言語的魅力,控制DSA演算法的精華與實戰技能。經由過程進修本文,讀者可能更好地懂得跟利用數據構造,進步編程才能。